1. Singer M, Deutschman CS, Seymour CW, et al. (2016): The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315: 801-810.
2.
Bateman RM, Sharpe MD, Jagger JE, et al. 36th International Symposium on Intensive Care and Emergency Medicine: Brussels, Belgium. 15-18 March 2016. Crit Care 20 (Suppl 2): 94.
3.
Gomez H, Kellum JA, Ronco C (2017): Metabolic reprogramming and tolerance during sepsis-induced AKI. Nat Rev Nephrol 13: 143-151.
4.
Poston JT, Koyner JL (2019): Sepsis associated acute kidney injury. BMJ 364: k4891.
5.
Uchino S, Kellum JA, Bellomo R, et al. (2005): Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294: 813-818.
6.
Bagshaw SM, Lapinsky S, Dial S, et al. (2009): Acute kidney injury in septic shock: clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Med 35: 871-881.
7.
Zarbock A, Nadim MK, Pickkers P, et al. (2023): Sepsis-associated acute kidney injury: consensus report of the 28th Acute Disease Quality Initiative workgroup. Nat Rev Nephrol 19: 401-417.
8.
Peerapornratana S, Manrique-Caballero CL, Gomez H, Kellum JA (2019): Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int 96: 1083-1099.
9.
Morrell ED, Kellum JA, Pastor-Soler NM, Hallows KR (2014): Septic acute kidney injury: molecular mechanisms and the importance of stratification and targeting therapy. Crit Care 18: 501.
10.
Maiden MJ, Otto S, Brealey JK, et al. (2016): Structure and function of the kidney in septic shock. A prospective controlled experimental study. Am J Respir Crit Care Med 194: 692-700.
11.
Cao L, Liu Y, Zhang L, Wei Y (2017): Role of poly (ADP-ribose) polymerase-1 and cytokines in acute renal injury in elderly Chinese patients with diabetes mellitus. Clin Interv Aging 12: 2039-2045.
12.
Kellum JA, Prowle JR (2018): Paradigms of acute kidney injury in the intensive care setting. Nat Rev Nephrol 14: 217-230.
13.
Zheng H, Yu Z, Wang H, et al. (2022): MiR-125b-5p ameliorates hypoxia/reoxygenation-induced endothelial cell dysfunction and attenuates reduced uterine perfusion pressure-induced hypertension in pregnant rats via targeting BMF. Hypertens Pregnancy 41: 79-88.
14.
Mahtal N, Lenoir O, Tinel C, et al. (2022): MicroRNAs in kidney injury and disease. Nat Rev Nephrol 18: 643-662.
15.
Leti F, Malenica I, Doshi M, et al. (2015): High-throughput sequencing reveals altered expression of hepatic microRNAs in nonalcoholic fatty liver disease-related fibrosis. Transl Res 166: 304-314.
16.
Pandit KV, Milosevic J (2015): MicroRNA regulatory networks in idiopathic pulmonary fibrosis. Biochem Cell Biol 93: 129-137.
17.
Aomatsu A, Kaneko S, Yanai K, et al. (2022): MicroRNA expression profiling in acute kidney injury. Transl Res 244: 1-31.
18.
Li YF, Jing Y, Hao J, et al. (2013): MicroRNA-21 in the pathogenesis of acute kidney injury. Protein Cell 4: 813-819.
19.
Ma J, Li YT, Zhang SX, et al. (2019): MiR-590-3p attenuates acute kidney injury by inhibiting tumor necrosis factor receptor-associated factor 6 in septic mice. Inflammation 42: 637-649.
20.
Chen Y, Jing H, Tang S, et al. (2022): Non-coding RNAs in sepsis-associated acute kidney injury. Front Physiol 13: 830924.
21.
Zhang L, Li J, Cui L, et al. (2020): Retraction notice to “MicroRNA-30b promotes lipopolysaccharide-induced inflammatory injury and alleviates autophagy through JNK and NF-kappaB pathways in HK-2 cells” [Biomed. Pharmacother. 101 (2018) 842-851]. Biomed Pharmacother 128: 110279.
22.
Luo M, Yan D, Sun Q, et al. (2020): Ginsenoside Rg1 attenuates cardiomyocyte apoptosis and inflammation via the TLR4/NF-kB/NLRP3 pathway. J Cell Biochem 121: 2994-3004.
23.
Zhang P, Yi L, Qu S, et al. (2020): The biomarker TCONS_00016233 drives septic AKI by targeting the miR-22-3p/AIFM1 signaling axis. Mol Ther Nucleic Acids 19: 1027-1042.
24.
Qin Y, Wang G, Peng Z (2019): MicroRNA-191-5p diminished sepsis-induced acute kidney injury through targeting oxidative stress responsive 1 in rat models. Biosci Rep 39: BSR20190548.
25.
Wang JN, Yang Q, Yang C, et al. (2020): Smad3 promotes AKI sensitivity in diabetic mice via interaction with p53 and induction of NOX4-dependent ROS production. Redox Biol 32: 101479.
26.
Rousta AM, Mirahmadi SM, Shahmohammadi A, et al. (2018): Protective effect of sesamin in lipopolysaccharide-induced mouse model of acute kidney injury via attenuation of oxidative stress, inflammation, and apoptosis. Immunopharmacol Immunotoxicol 40: 423-429.
27.
Li R, Sano T, Mizokami A, et al. (2023): miR-582-5p targets Skp1 and regulates NF-kappaB signaling-mediated inflammation. Arch Biochem Biophys 734: 109501.
28.
Yang G, Xue Z, Zhao Y (2021): MiR-582-5p attenuates neonatal hypoxic-ischemic encephalopathy by targeting high mobility group box 1 (HMGB1) through inhibiting neuroinflammation and oxidative stress. Curr Neurovasc Res 18: 295-301.
29.
Mei J, Zhang Y, Lu S, Wang J (2020): Long non-coding RNA NNT-AS1 regulates proliferation, apoptosis, inflammation and airway remodeling of chronic obstructive pulmonary disease via targeting miR-582-5p/FBXO11 axis. Biomed Pharmacother 129: 110326.
30.
Zapala B, Kaminska A, Piwowar M, et al. (2023): miRNA signature of urine extracellular vesicles shows the involvement of inflammatory and apoptotic processes in diabetic chronic kidney disease. Pharm Res 40: 817-832.
31.
Wang X, Wang Y, Kong M, Yang J (2020): MiR-22-3p suppresses sepsis-induced acute kidney injury by targeting PTEN. Biosci Rep 40: BSR20200527.
32.
Koo JH, Yu HC, Nam S, et al. (2023): Casein kinase 2 alpha inhibition protects against sepsis-induced acute kidney injury. Int J Mol Sci 24: 9783.
33.
Yang JJ, Wu BB, Han F, et al. (2020): Gene expression profiling of sepsis-associated acute kidney injury. Exp Ther Med 20: 34.
34.
Xin X, Li Q, Fang J, Zhao T (2021): LncRNA HOTAIR: A potential prognostic factor and therapeutic target in human cancers. Front Oncol 11: 679244.
35.
Melo Z, Ishida C, Goldaraz MP, et al. (2018): Novel roles of non-coding RNAs in opioid signaling and cardioprotection. Noncoding RNA 4: 22.
36.
Chen Q, Tong M, Sun N, et al. (2022): Integrated analysis of miRNA-mRNA expression in mink lung epithelial cells infected with canine distemper virus. Front Vet Sci 9: 897740.
37.
Vincent JL (1987): Should we still administer calcium during cardiopulmonary resuscitation? Intensive Care Med 13: 369-370.
38.
Yan S, Dang G, Zhang X, et al. (2017): Downregulation of circulating exosomal miR-638 predicts poor prognosis in colon cancer patients. Oncotarget 8: 72220-72226.
39.
Ibanez-Ventoso C, Vora M, Driscoll M (2008): Sequence relationships among C. elegans, D. melanogaster and human microRNAs highlight the extensive conservation of micro- RNAs in biology. PLoS One 3: e2818.
40.
Ye M, Wang S, Sun P, Qie J (2021): Integrated microRNA expression profile reveals dysregulated miR-20a-5p and miR-200a-3p in liver fibrosis. Biomed Res Int 2021: 9583932.
41.
Qi J, Hu Z, Liu S, et al. (2020): Comprehensively analyzed macrophage-regulated genes indicate that PSMA2 promotes colorectal cancer progression. Front Oncol 10: 618902.
42.
Wang LL, Zhang M (2018): miR-582-5p is a potential prognostic marker in human non-small cell lung cancer and functions as a tumor suppressor by targeting MAP3K2. Eur Rev Med Pharmacol Sci 22: 7760-7767.
43.
Li L, Ma L (2018): Upregulation of miR-582-5p regulates cell proliferation and apoptosis by targeting AKT3 in human endometrial carcinoma. Saudi J Biol Sci 25: 965-970.
44.
Tian Y, Guan Y, Su Y, et al. (2020): MiR-582-5p inhibits bladder cancer-genesis by suppressing TTK expression. Cancer Manag Res 12: 11933-11944.
45.
Xiao W, Zhou H, Chen B, et al. (2022): miR-582-5p inhibits migration and chemo-resistant capabilities of colorectal cancer cells by targeting TNKS2. Genes Genomics 44: 747-756.
46.
Zhang Z, Xu Y, Chi S, Cui L (2020): MicroRNA-582-5p reduces propofol-induced apoptosis in developing neurons by targeting ROCK1. Curr Neurovasc Res 17: 140-146.
47.
Zhang X, Zhang Y, Yang J, et al. (2015): Upregulation of miR-582-5p inhibits cell proliferation, cell cycle progression and invasion by targeting Rab27a in human colorectal carcinoma. Cancer Gene Ther 22: 475-480.
48.
Mo Q, You S, Fu H, et al. (2022): Purification and identification of antioxidant peptides from rice fermentation of Lactobacillus plantarum and their protective effects on UVA-induced oxidative stress in skin. Antioxidants (Basel) 11: 2333.
49.
Zhang Y, Wu X, Wang X, et al. (2021): Grey relational analysis combined with network pharmacology to identify antioxidant components and uncover its mechanism from Moutan cortex. Front Pharmacol 12: 748501.
50.
Liu Z, Gan L, Chen Y, et al. (2016): Mark4 promotes oxidative stress and inflammation via binding to PPARgamma and activating NF-kappaB pathway in mice adipocytes. Sci Rep 6: 21382.
51.
Pele R, Marc G, Ionut I, et al. (2022): Antioxidant and cytotoxic activity of new polyphenolic derivatives of quinazolin-4(3H)-one: synthesis and in vitro activities evaluation. Pharmaceutics 15: 136.
52.
Kiracofe GH, Wright JM, Schalles RR, et al. (1993): Pregnancy-specific protein B in serum of postpartum beef cows. J Anim Sci 71: 2199-1205.
53.
Skovranek J, First T, Zapletal A (1988): Echocardiographic findings in children and adolescents with idiopathic interstitial pulmonary fibrosis. Cesk Pediatr 43: 139-144.
54.
Mullany LK, Wong KK, Marciano DC, et al. (2015): Specific TP53 mutants overrepresented in ovarian cancer impact CNV, TP53 activity, responses to nutlin-3a, and cell survival. Neoplasia 17: 789-803.
55.
Wu H, Chen L, Lu K, et al. (2023): HMGB2 deficiency mitigates abdominal aortic aneurysm by suppressing Ang-II-caused ferroptosis and inflammation via NF-kappabeta pathway. Mediators Inflamm 2023: 2157355.
56.
Zhang H, Xiang X, Zhou B, et al. (2023): Circular RNA SLTM as a miR-421-competing endogenous RNA to mediate HMGB2 expression stimulates apoptosis and inflammation in arthritic chondrocytes. J Biochem Mol Toxicol 37: e23306.
57.
Tan HY, Qing B, Luo XM, Liang HX (2021): Downregulation of miR-223 promotes HMGB2 expression and induces oxidative stress to activate JNK and promote autophagy in an in vitro model of acute lung injury. J Inflamm (Lond) 18: 29.
58.
Xu W, Zhang H, Zhang Q, Xu J (2022): beta-Amyrin ameliorates diabetic nephropathy in mice and regulates the miR-181b-5p/HMGB2 axis in high glucose-stimulated HK-2 cells. Environ Toxicol 37: 637-649.