eISSN: 2449-9315
ISSN: 1234-8279
Pharmacotherapy in Psychiatry and Neurology/Farmakoterapia w Psychiatrii i Neurologii
Bieżący numer Archiwum Artykuły zaakceptowane O czasopiśmie Rada naukowa Recenzenci Bazy indeksacyjne Prenumerata Kontakt Zasady publikacji prac Standardy etyczne i procedury
Panel Redakcyjny
Zgłaszanie i recenzowanie prac online
2/2021
vol. 37
 
Poleć ten artykuł:
Udostępnij:
Artykuł przeglądowy

Przegląd literatury dotyczącej zastosowania rezonansu magnetycznego w psychiatrii z wyszczególnieniem schizofrenii oraz choroby afektywnej dwu- i jednobiegunowej

Jakub Majchrzycki
1
,
Agnieszka Permoda-Pachuta
2
,
Martyna Wachowiak
1

  1. Centrum Medyczne HCP im. św. Jana Pawła II – Centrum Zdrowia Psychicznego w Poznaniu
  2. Pracownia Neuropsychiatrii Kliniki Psychiatrii Dorosłych UM w Poznaniu
Farmakoterapia w Psychiatrii i Neurologii 2021, 37 (2), 137–149
Data publikacji online: 2021/12/07
Plik artykułu:
Pobierz cytowanie
 
Metryki PlumX:
 
1. Antosik-Biernacka A, Stefańczyk L. Użyteczność tomografii komputerowej i rezonansu magnetycznego w psychiatrii. Psychiatr Dyp 2014 https://podyplomie.pl/psychiatria/16404,uzytecznosc-tomografii-komputerowej-i-rezonansu-magnetycznego-w-psychiatrii (last accessed on 28.06.2020).
2. Atagün Mİ, Şıkoğlu EM, Can SS, Uğurlu GK, Kaymak SU, Çayköylü A et al. Neurochemical differences between bipolar disorder type I and II in superior temporal cortices: A proton magnetic resonance spectroscopy study J Affect Disord 2018; 1(235): 15-19.
3. Baribeau DA, Anagnostou EA. Comparison of Neuroimaging Findings in Childhood Onset Schizophrenia and Autism Spectrum Disorder: A Review of the Literature. Front Psychiatry 2013; 4: 175.
4. Bobek–Billewicz B, Senczenko W. Obrazowanie Tensora dyfuzji metodą rezonansu magnetycznego. In: Radiologia Diagnostyka Obrazowa RTG, TK, USG i MR. Pruszyński B, Cieszanowski A (eds), Wydawnictwo Lekarskie PZWL, Warszawa 2016, 34-42.
5. Chrobak AA, Bohaterewicz B, Tereszko A, Krupa A, Sobczak A, Ceglarek A et al. Zaburzenia połączeń funkcjonalnych między czołowymi polami okoruchowymi, wzgórzem a móżdżkiem w chorobie afektywnej dwubiegunowej. Psychiatr Pol 2019; 133: 1-11.
6. Fang J, Mao N, Jiang X, Li X, Wang B, Wang Q. Functional and anatomical brain abnormalities and effects of antidepressant in major depressive disorder: combined application of voxel-based morphometry and amplitude of frequency fluctuation in resting state. J Comput Assist Tomogr. 2015; 39:766-773.
7. Fox R J, Beall E, Bhattacharyya P, Chen JT, Sakaie K. Nowe techniki MR w stwardnieniu rozsianym: obecny stan i przyszłe wyzwania. Neurol Dyp 2012; 7(5): 45-60.
8. Frodl T, Meisenzahl EM, Möller HJ. Value of Diagnostic Imaging in Evaluation of Electroconvulsive Therapy. Nervenarzt 2004; 75(3): 227-33.
9. Galińska-Skok B, Małus A, Konarzewska B, Rogowska-Zach A, Milewski R, Tarasów E et al. Choline Compounds of the Frontal Lobe and Temporal Glutamatergic System in Bipolar and Schizophrenia Proton Magnetic Resonance Spectroscopy Study. Dis Markers 2018; (1): 1-7.
10. Gbyl K, Rostrup E, Raghava JM, Carlsen JF, Schmidt LS, Lindberg U et al. Cortical thickness following electroconvulsive therapy in patients with depression: a longitudinal MRI study. Acta Psychiatr Scand 2019; 140(3): 205-216.
11. Gonul AS, Kitis O, Ozan E, Akdeniz F, Eker C, Eker OD et al. The effect of antidepressant treatment on N-acetyl aspartate levels of medial frontal cortex in drug-free depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30: 120-125.
12. Hallahan B, Newell J, Soares JC, Brambilla P, Strakowski SM, Fleck DE et al. Structural magnetic resonance imaging in bipolar disorder: an international collaborative mega-analysis of individual adult patient data. Biol Psychiatry 2011; 69: 326-335.
13. Hatton SN, Lagopoulos J, Hermens DF, Hickie IB, Scott E, Bennett MR. White matter tractography in early psychosis: clinical and neurocognitive associations. J Psychiatry Neurosci 2014; 39(6): 417-427.
14. Hibar DP, Westlye LT, Doan NT, Jahanshad N, Cheung JW, Ching CRK et al. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry 2018; 23(4): 932-942.
15. Jie N-F, Zhu M-H, Ma X-Y, Osuch EA, Wammes M, Théberge J. et al. Discriminating bipolar disorder from major depression based on svm-foba: efficient feature selection with multimodal brain imaging data. IEEE Trans Auton Ment Dev 2015; 7: 320-331.
16. Kang JI, Park HJ, Kim SJ, Kim KR, Lee SY, Lee E et al. Reduced binding potential of GABA-A/benzodiazepine receptors in individuals at ultra-high risk for psychosis: an [18F]-fluoroflumazenil positron emission tomography study. Schizophr Bull 2014; 40(3): 548-57.
17. Keedy SK, Rosen C, Khine T, Rajarethinam R, Janicak PG, Sweeney JA. An MRI study of visual attention and sensorimotor function before and after antipsychotic treatment in first-episode schizophrenia. Psychiatry Res 2009; 172(1): 16-23.
18. Konarski JZ, McIntyre RS, Soczynska JK, Bottas A, Kennedy SH. Clinical translation of neuroimaging research in mood disorders. Psychiatry (Edgmont) 2006; 3: 46-57.
19. Lencer R, Yao L, Reilly JL, Keedy SK, McDowell JE, Keshavan MS et al. Alterations in intrinsic fronto-thalamo-parietal connectivity are associated with cognitive control deficits in psychotic disorders. Hum Brain Mapp 2018; 40(1): 1-12.
20. Michael N, Erfurth A, Ohrmann P, Arolt V, Heindel W, Pfleiderer B et al. Metabolic changes within the left dorsolateral prefrontal cortex occurring with electroconvulsive therapy in patients with treatment resistant unipolar depression. Psychol Med 2003; 33: 1277-1284.
21. Moore CM, Breeze JL, Gruber SA, Babb Suzann M, Frederick BDeB, Villafuerte RA et al. Choline, myo-inositol and mood in bipolar disorder: a proton magnetic resonance spectroscopic imaging study of the anterior cingulate cortex. Bipolar Dis 2000; 2: 207-216.
22. Moore GJ, Bebchuk J, Parrish JK. Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive. Am J Psychiatry 1999; 156: 1902-1908.
23. Moriguchi S, Takamiya A, Noda Y, Horita N, Wada M, Tsugawa S et al. Glutamatergic neurometabolite levels in major depressive disorder: a systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Mol Psychiatry 2019; 24(7): 952-964.
24. Obergriesser T, Ende G, Braus DF, Henn FA. Long-term follow-up of magnetic resonance-detectable choline signal changes in the hippocampus of patients treated with electroconvulsive therapy. J Clin Psychiatry 2003; 64: 775-780.
25. Patel MJ, Andreescu C, Price JC, Edelman KL, Reynolds 3rd CF, Aizenstein HJ. Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction. Int J Geriatr Psychiatry 2015; 30(10): 1056-1067.
26. Sambataro F, Thomann PA, Nolte HM, Hasenkamp JH, Hirjak D, Kubera KM et al. Transdiagnostic Modulation of Brain Networks by Electroconvulsive Therapy in Schizophrenia and Major Depression. Eur Neuropsychopharm 2019; 29(8): 925-935.
27. Sanacora G, Gueorguieva R, Epperson CN, Wu YT, Appel M, Rothman DL et al. Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry 2004; 61: 705-713.
28. Schnack HG, Nieuwenhuis M, van Haren NEM, Abramovic L, Scheewe TW, Brouwer RM et al. Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. Neuroimage 2014; 84: 299-306.
29. Seung-Hyun S, Woon Y, Harin K, Sung WJ, Yangsik K, Jungsun L. Deterioration in Global Organization of Structural Brain Networks in Schizophrenia: A Diffusion MRI Tractography Study Front Psychiatry 2018; 9: 272.
30. Smith EA, Russell A, Lorch E, Banerjee SP, Rose M, Ivey J et al. Increased medial thalamic choline found in pediatric patients with obsessive-compulsive disorder versus major depression or healthy control subjects: a magnetic resonance spectroscopy study. Biol Psychiatry 2003; 54: 1399-1405.
31. Szewczyk P, Guziński M, Sąsiadek M. Zastosowanie obrazowania dyfuzji rezonansu magnetycznego (DWI) w różnicowaniu świeżych i przewlekłych zmian niedokrwiennych – opis przypadku. Udar Mózgu 2008; 10(1): 49-54.
32. Szulc A. Neuroobrazowanie a leczenie schizofrenii. Psychiatria po Dyplomie 2015; 05. https://podyplomie.pl/psychiatria/19943,neuroobrazowanie-a-leczenie-schizofrenii-przeglad-literatury (last accessed on 28.06.2020).
33. Xu K, Liu H, Li H, Tang Y, Womer F, Jiang X et al. Amplitude of low-frequency fluctuations in bipolar disorder: A resting state fMRI study. J Affect Disord 2014; 152-154: 237-242.
34. Yildiz-Yesiloglu A, Ankerst DP. Review of 1H magnetic resonance spectroscopy findings in major depressive disorder: a meta-analysis. Psychiatry Res 2006; 147: 1-25.
35. Zaborowski A, Antosik-Biernacka A, Biernacki R, Olszycki M, Kłoszewska I, Stefańczyk L. Obrazowanie z zastosowaniem transferu magnetyzacji – nowa metoda oceny tkanki mózgowej w schizofrenii. Psychiatr Pol 2007; 41(3): 309-318.
36. Zaremba K. Czy można zmierzyć myśli, czyli podstawy funkcjonalnego rezonansu magnetycznego. PAK 2008; 54(6): 334-336.

© 2025 Termedia Sp. z o.o.
Developed by Bentus.