eISSN: 1644-4124
ISSN: 1426-3912
Central European Journal of Immunology
Current issue Archive Manuscripts accepted About the journal Special Issues Editorial board Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
Share:
Share:
Experimental immunology

STK11 mutation affects tumor proliferation by impacting CD4+ T cell activity in lung adenocarcinoma

Jiemeng Ge
1
,
Rui Feng
1
,
Feihu Zhu
1
,
Zhihui Xu
1
,
Qiangwei Chi
1
,
Zhenye Lv
1

  1. Department of Cardiothoracic Surgery, Wenzhou People’s Hospital, Wenzhou, China
Cent Eur J Immunol 2024; 49 (3)
Online publish date: 2024/10/28
Article file
- STK11 mutation.pdf  [1.26 MB]
Get citation
 
PlumX metrics:
 
1. Zhang Q, Zhao Y, Song Z, et al. (2023): Identification of THSD7B and PRMT9 mutations as risk factors for familial lung adenocarcinoma: A case report. Medicine (Baltimore) 102: e32872.
2. Li X, Zhang L, Zeng L, et al. (2021): Difficult differential diagnosis of bladder pedicled masses about metastasis from non-small cell lung cancer: A case report. Cancer Biol Ther 22: 106-111.
3. Testa U, Pelosi E, Castelli G (2022): Molecular characterization of lung adenocarcinoma combining whole exome sequencing, copy number analysis and gene expression profiling. Expert Rev Mol Diagn 22: 77-100.
4. Zarifa A, Albittar A, Kim PY, et al. (2019): Cardiac toxicities of anticancer treatments: chemotherapy, targeted therapy and immunotherapy. Curr Opin Cardiol 34: 441-450.
5. Peretz A, Shlomo IB, Nitzan O, et al. (2016): Clostridium difficile infection: Associations with chemotherapy, radiation therapy, and targeting therapy treatments. Curr Med Chem 23: 4442-4449.
6. Raj S, Khurana S, Choudhari R, et al. (2021): Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin Cancer Biol 69: 166-177.
7. Ashaie MA, Islam RA, Kamaruzman NI, et al. (2019): Targeting cell adhesion molecules via carbonate apatite-mediated delivery of specific siRNAs to breast cancer cells in vitro and in vivo. Pharmaceutics 2019; 11: 309.
8. Das RS, Mukherjee A, Kar S, et al. (2022): Construction of red fluorescent dual targeting mechanically interlocked molecules for live cancer cell specific lysosomal staining and multicolor cellular imaging. Org Lett 24: 5907-5912.
9. Chadalapaka G, Jutooru I, Burghardt R, Safe S (2010): Drugs that target specificity proteins downregulate epidermal growth factor receptor in bladder cancer cells. Mol Cancer Res 8: 739-750.
10. Brueckl WM, Ficker JH, Zeitler G (2020): Clinically relevant prognostic and predictive markers for immune-checkpoint-inhibitor (ICI) therapy in non-small cell lung cancer (NSCLC). BMC Cancer 2020; 20: 1185.
11. Pisapia P, Malapelle U, Troncone G (2019): Liquid biopsy and lung cancer. Acta Cytol 2019; 63: 489-496.
12. Farooq H, Bien H, Chang V, et al. (2022): Loss of function STK11 alterations and poor outcomes in non-small-cell lung cancer: Literature and case series of US veterans. Semin Oncol 1: S0093-7754(22)00048-3.
13. Li Z, Ding B, Xu J, et al. (2020): Relevance of STK11 mutations regarding immune cell infiltration, drug sensitivity, and cellular processes in lung adenocarcinoma. Front Oncol 10: 580027.
14. Hollstein PE, Eichner LJ, Brun SN, et al. (2019): The AMPK-related kinases SIK1 and SIK3 mediate key tumor-suppressive effects of LKB1 in NSCLC. Cancer Discov 9: 1606-1627.
15. Delgado TC, Lopitz-Otsoa F, Martinez-Chantar ML (2019): Post-translational modifiers of liver kinase B1/serine/threonine kinase 11 in hepatocellular carcinoma. J Hepatocell Carcinoma 6: 85-91.
16. Todsaporn D, Mahalapbutr P, Poo-Arporn RP, et al. (2022): Structural dynamics and kinase inhibitory activity of three generations of tyrosine kinase inhibitors against wild-type, L858R/T790M, and L858R/T790M/C797S forms of EGFR. Comput Biol Med 147: 105787.
17. Helfrich BA, Raben D, Varella-Garcia M, et al. (2006): Antitumor activity of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib (ZD1839, Iressa) in non-small cell lung cancer cell lines correlates with gene copy number and EGFR mutations but not EGFR protein levels. Clin Cancer Res 12: 7117-7125.
18. Kim S, Park AK, Cho J (2018): Early emergence of de novo EGFR T790M gatekeeper mutations during erlotinib treatment in PC9 non-small cell lung cancer cells. Biochem Biophys Res Commun 503: 710-714.
19. Marini E, Marino M, Gionfriddo G, et al. (2022): Investigation into the use of encorafenib to develop potential PROTACs directed against BRAF(V600E) protein. Molecules 27: 8513.
20. Lorentzen HF (2019): Targeted therapy for malignant melanoma. Curr Opin Pharmacol 46: 116-121.
21. Voutsadakis IA (2022): The genomic environment of BRAF mutated and BRAF/PIK3CA double mutated colorectal cancers. J Clin Med 11: 5132.
22. Sun SY (2013): Impact of genetic alterations on mTOR-targeted cancer therapy. Chin J Cancer 32: 270-274.
23. Machino H, Kaneko S, Komatsu M, et al. (2022): The metabolic stress-activated checkpoint LKB1-MARK3 axis acts as a tumor suppressor in high-grade serous ovarian carcinoma. Commun Biol 5: 39.
24. Hogg A, Sui Y, Ben-Sasson SZ, et al. (2017): Role of CD4 T cell helper subsets in immune response and deviation of CD8 T cells in mice. Eur J Immunol 47: 2059-2069.
25. Kravtsov DS, Erbe AK, Sondel PM, Rakhmilevich AL (2022): Roles of CD4+ T cells as mediators of antitumor immunity. Front Immunol 13: 972021.
26. Parzmair GP, Gereke M, Haberkorn O, et al. (2017): ADAP plays a pivotal role in CD4+ T cell activation but is only marginally involved in CD8+ T cell activation, differentiation, and immunity to pathogens. J Leukoc Biol 101: 407-419.
27. Wang Z, Wang X, Jin R, et al. (2023): LAMP3 expression in the liver is involved in T cell activation and adaptive immune regulation in hepatitis B virus infection. Front Immunol 14: 1127572.
28. Bekri S, Rodney-Sandy R, Gruenstein D, et al. (2022): Neoantigen vaccine-induced CD4 T cells confer protective immunity in a mouse model of multiple myeloma through activation of CD8 T cells against non-vaccine, tumor-associated antigens. J Immunother Cancer 10: e003572.
29. Krebs CF, Steinmetz OM (2016): CD4(+) T cell fate in glomerulonephritis: A tale of Th1, Th17, and novel Treg subtypes. Mediators Inflamm 2016: 5393894.
30. Teixeira FFC, Cardoso FGR, Ferreira NS, et al. (2022): Effects of calcium hydroxide intracanal medications on T helper (Th1, Th2, Th9, Th17, and Tfh) and regulatory T (Treg) cell cytokines in apical periodontitis: A CONSORT RCT. J Endod 48: 975-984.
31. Barquero-Calvo E, Martirosyan A, Ordonez-Rueda D, et al. (2013): Neutrophils exert a suppressive effect on Th1 responses to intracellular pathogen Brucella abortus. PLoS Pathog 9: e1003167.
32. Jin X, Bai X, Yang Y, et al. (2020): NLRP3 played a role in Trichinella spiralis-triggered Th2 and regulatory T cells response. Vet Res 51: 107.
33. Varikuti S, Verma C, Natarajan G, et al. (2021): Micro- RNA155 plays a critical role in the pathogenesis of cutaneous leishmania major infection by promoting a Th2 response and attenuating dendritic cell activity. Am J Pathol 191: 809-816.
34. Xu L, Hu G, Xing P, et al. (2021): Corrigendum to “Paclitaxel alleviates the sepsis-induced acute kidney injury via lnc-MALAT1/miR-370-3p/HMGB1 axis” [Life Sci. 2020 Dec 1; 262:118505. doi:10.1016/j.lfs.2020.118505. Epub 2020 Sep 28]. Life Sci 272: 119159.
35. Hiltensperger M, Korn T (2018): The interleukin (IL)-23/ T helper (Th)17 axis in experimental autoimmune encephalomyelitis and multiple sclerosis. Cold Spring Harb Perspect Med 8: a029637.
36. Hyun KH, Gil KC, Kim SG, et al. (2019): Delphinidin chloride and its hydrolytic metabolite gallic acid promote differentiation of regulatory T cells and have an anti-inflammatory effect on the allograft model. J Food Sci 84: 920-930.
37. Anderson JL, Khoury G, Fromentin R, et al. (2020): Human immunodeficiency virus (HIV)-infected CCR6+ rectal CD4+ T cells and HIV persistence on antiretroviral therapy. J Infect Dis 221: 744-755.
38. Maldini CR, Gayout K, Leibman RS, et al. (2020): HIV-resistant and HIV-specific CAR-modified CD4(+) T cells mitigate HIV disease progression and confer CD4(+) T cell help in vivo. Mol Ther 28: 1585-1599.
39. Arneth B (2016): Activated CD4+ and CD8+ T cell proportions in multiple sclerosis patients. Inflammation 39: 2040-2044.
40. Krovi SH, Kuchroo VK (2022): Activation pathways that drive CD4(+) T cells to break tolerance in autoimmune diseases. Immunol Rev 307: 161-190.
41. Cui C, Wang J, Fagerberg E, et al. (2021): Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell 184: 6101-6118.e13.
42. Li H, Burgueno-Bucio E, Xu S, et al. (2019): CD5 on dendritic cells regulates CD4+ and CD8+ T cell activation and induction of immune responses. PLoS One 14: e0222301.
43. Sun JJ, Li HL, Ma H, et al. (2019): SMYD2 promotes cervical cancer growth by stimulating cell proliferation. Cell Biosci 9: 75.
44. Yaping W, Zhe W, Zhuling C, et al. (2022): The soldiers needed to be awakened: Tumor-infiltrating immune cells. Front Genet 13: 988703.
45. Svensson-Arvelund J, Cuadrado-Castano S, Pantsulaia G, et al. (2022): Expanding cross-presenting dendritic cells enhances oncolytic virotherapy and is critical for long-term anti-tumor immunity. Nat Commun 13: 7149.
46. Wang H, Guo J, Shang X, Wang Z (2020): Less immune cell infiltration and worse prognosis after immunotherapy for patients with lung adenocarcinoma who harbored STK11 mutation. Int Immunopharmacol 84: 106574.
47. Chen M, Liu X, Du J, et al. (2017): Differentiated regulation of immune-response related genes between LUAD and LUSC subtypes of lung cancers. Oncotarget 8: 133-144.
48. Maki-Nevala S, Sarhadi VK, Ronty M, et al. (2016): Hot spot mutations in Finnish non-small cell lung cancers. Lung Cancer 99: 102-110.
49. Wohlhieter CA, Richards AL, Uddin F, et al. (2020): Concurrent mutations in STK11 and KEAP1 promote ferroptosis protection and SCD1 dependence in lung cancer. Cell Rep 33: 108444.
50. La Fleur L, Falk-Sorqvist E, Smeds P, et al. (2019): Mutation patterns in a population-based non-small cell lung cancer cohort and prognostic impact of concomitant mutations in KRAS and TP53 or STK11. Lung Cancer 130: 50-58.
51. Abe K, Kitago M, Kitagawa Y, Hirasawa A (2021): Hereditary pancreatic cancer. Int J Clin Oncol 26: 1784-1792.
52. Shiovitz S, Korde LA (2015): Genetics of breast cancer: a topic in evolution. Ann Oncol 26: 1291-1299.
53. Ricciuti B, Arbour KC, Lin JJ, et al. (2022): Diminished efficacy of programmed death-(ligand)1 inhibition in STK11- and KEAP1-mutant lung adenocarcinoma is affected by KRAS mutation status. J Thorac Oncol 17: 399-410.
54. Pop-Bica C, Ciocan CA, Braicu C, et al. (2022): Next-generation sequencing in lung cancer patients: A comparative approach in NSCLC and SCLC mutational landscapes. J Pers Med 12: 453.
55. Huang Y, Zhang H, Feng J, Tang B (2022): STK11 mutation affects the killing effect of NK cells to promote the progression of lung adenocarcinoma. APMIS 130: 647-656.
56. Fan J, Wang K, Zirkin B, Papadopoulos V (2018): CRISPR/Cas9-mediated Tspo gene mutations lead to reduced mitochondrial membrane potential and steroid formation in MA-10 mouse tumor Leydig cells. Endocrinology 159: 1130-1146.
57. Miller J (2020): The function of the thymus and its impact on modern medicine. Science 369: eaba2429.
58. Huntington ND, Gray DH (2018): Immune homeostasis in health and disease. Immunol Cell Biol 96: 451-452.
59. Tan Y, Wang M, Zhang Y, et al. (2021): Tumor-associated macrophages: A potential target for cancer therapy. Front Oncol 11: 693517.
60. Lee M, Du H, Winer DA, et al. (2022): Mechanosensing in macrophages and dendritic cells in steady-state and disease. Front Cell Dev Biol 10: 1044729.
Copyright: © 2024 Polish Society of Experimental and Clinical Immunology This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
Quick links
© 2024 Termedia Sp. z o.o.
Developed by Bentus.