1. Zhang Q, Zhao Y, Song Z, et al. (2023): Identification of THSD7B and PRMT9 mutations as risk factors for familial lung adenocarcinoma: A case report. Medicine (Baltimore) 102: e32872.
2.
Li X, Zhang L, Zeng L, et al. (2021): Difficult differential diagnosis of bladder pedicled masses about metastasis from non-small cell lung cancer: A case report. Cancer Biol Ther 22: 106-111.
3.
Testa U, Pelosi E, Castelli G (2022): Molecular characterization of lung adenocarcinoma combining whole exome sequencing, copy number analysis and gene expression profiling. Expert Rev Mol Diagn 22: 77-100.
4.
Zarifa A, Albittar A, Kim PY, et al. (2019): Cardiac toxicities of anticancer treatments: chemotherapy, targeted therapy and immunotherapy. Curr Opin Cardiol 34: 441-450.
5.
Peretz A, Shlomo IB, Nitzan O, et al. (2016): Clostridium difficile infection: Associations with chemotherapy, radiation therapy, and targeting therapy treatments. Curr Med Chem 23: 4442-4449.
6.
Raj S, Khurana S, Choudhari R, et al. (2021): Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin Cancer Biol 69: 166-177.
7.
Ashaie MA, Islam RA, Kamaruzman NI, et al. (2019): Targeting cell adhesion molecules via carbonate apatite-mediated delivery of specific siRNAs to breast cancer cells in vitro and in vivo. Pharmaceutics 2019; 11: 309.
8.
Das RS, Mukherjee A, Kar S, et al. (2022): Construction of red fluorescent dual targeting mechanically interlocked molecules for live cancer cell specific lysosomal staining and multicolor cellular imaging. Org Lett 24: 5907-5912.
9.
Chadalapaka G, Jutooru I, Burghardt R, Safe S (2010): Drugs that target specificity proteins downregulate epidermal growth factor receptor in bladder cancer cells. Mol Cancer Res 8: 739-750.
10.
Brueckl WM, Ficker JH, Zeitler G (2020): Clinically relevant prognostic and predictive markers for immune-checkpoint-inhibitor (ICI) therapy in non-small cell lung cancer (NSCLC). BMC Cancer 2020; 20: 1185.
11.
Pisapia P, Malapelle U, Troncone G (2019): Liquid biopsy and lung cancer. Acta Cytol 2019; 63: 489-496.
12.
Farooq H, Bien H, Chang V, et al. (2022): Loss of function STK11 alterations and poor outcomes in non-small-cell lung cancer: Literature and case series of US veterans. Semin Oncol 1: S0093-7754(22)00048-3.
13.
Li Z, Ding B, Xu J, et al. (2020): Relevance of STK11 mutations regarding immune cell infiltration, drug sensitivity, and cellular processes in lung adenocarcinoma. Front Oncol 10: 580027.
14.
Hollstein PE, Eichner LJ, Brun SN, et al. (2019): The AMPK-related kinases SIK1 and SIK3 mediate key tumor-suppressive effects of LKB1 in NSCLC. Cancer Discov 9: 1606-1627.
15.
Delgado TC, Lopitz-Otsoa F, Martinez-Chantar ML (2019): Post-translational modifiers of liver kinase B1/serine/threonine kinase 11 in hepatocellular carcinoma. J Hepatocell Carcinoma 6: 85-91.
16.
Todsaporn D, Mahalapbutr P, Poo-Arporn RP, et al. (2022): Structural dynamics and kinase inhibitory activity of three generations of tyrosine kinase inhibitors against wild-type, L858R/T790M, and L858R/T790M/C797S forms of EGFR. Comput Biol Med 147: 105787.
17.
Helfrich BA, Raben D, Varella-Garcia M, et al. (2006): Antitumor activity of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib (ZD1839, Iressa) in non-small cell lung cancer cell lines correlates with gene copy number and EGFR mutations but not EGFR protein levels. Clin Cancer Res 12: 7117-7125.
18.
Kim S, Park AK, Cho J (2018): Early emergence of de novo EGFR T790M gatekeeper mutations during erlotinib treatment in PC9 non-small cell lung cancer cells. Biochem Biophys Res Commun 503: 710-714.
19.
Marini E, Marino M, Gionfriddo G, et al. (2022): Investigation into the use of encorafenib to develop potential PROTACs directed against BRAF(V600E) protein. Molecules 27: 8513.
20.
Lorentzen HF (2019): Targeted therapy for malignant melanoma. Curr Opin Pharmacol 46: 116-121.
21.
Voutsadakis IA (2022): The genomic environment of BRAF mutated and BRAF/PIK3CA double mutated colorectal cancers. J Clin Med 11: 5132.
22.
Sun SY (2013): Impact of genetic alterations on mTOR-targeted cancer therapy. Chin J Cancer 32: 270-274.
23.
Machino H, Kaneko S, Komatsu M, et al. (2022): The metabolic stress-activated checkpoint LKB1-MARK3 axis acts as a tumor suppressor in high-grade serous ovarian carcinoma. Commun Biol 5: 39.
24.
Hogg A, Sui Y, Ben-Sasson SZ, et al. (2017): Role of CD4 T cell helper subsets in immune response and deviation of CD8 T cells in mice. Eur J Immunol 47: 2059-2069.
25.
Kravtsov DS, Erbe AK, Sondel PM, Rakhmilevich AL (2022): Roles of CD4+ T cells as mediators of antitumor immunity. Front Immunol 13: 972021.
26.
Parzmair GP, Gereke M, Haberkorn O, et al. (2017): ADAP plays a pivotal role in CD4+ T cell activation but is only marginally involved in CD8+ T cell activation, differentiation, and immunity to pathogens. J Leukoc Biol 101: 407-419.
27.
Wang Z, Wang X, Jin R, et al. (2023): LAMP3 expression in the liver is involved in T cell activation and adaptive immune regulation in hepatitis B virus infection. Front Immunol 14: 1127572.
28.
Bekri S, Rodney-Sandy R, Gruenstein D, et al. (2022): Neoantigen vaccine-induced CD4 T cells confer protective immunity in a mouse model of multiple myeloma through activation of CD8 T cells against non-vaccine, tumor-associated antigens. J Immunother Cancer 10: e003572.
29.
Krebs CF, Steinmetz OM (2016): CD4(+) T cell fate in glomerulonephritis: A tale of Th1, Th17, and novel Treg subtypes. Mediators Inflamm 2016: 5393894.
30.
Teixeira FFC, Cardoso FGR, Ferreira NS, et al. (2022): Effects of calcium hydroxide intracanal medications on T helper (Th1, Th2, Th9, Th17, and Tfh) and regulatory T (Treg) cell cytokines in apical periodontitis: A CONSORT RCT. J Endod 48: 975-984.
31.
Barquero-Calvo E, Martirosyan A, Ordonez-Rueda D, et al. (2013): Neutrophils exert a suppressive effect on Th1 responses to intracellular pathogen Brucella abortus. PLoS Pathog 9: e1003167.
32.
Jin X, Bai X, Yang Y, et al. (2020): NLRP3 played a role in Trichinella spiralis-triggered Th2 and regulatory T cells response. Vet Res 51: 107.
33.
Varikuti S, Verma C, Natarajan G, et al. (2021): Micro- RNA155 plays a critical role in the pathogenesis of cutaneous leishmania major infection by promoting a Th2 response and attenuating dendritic cell activity. Am J Pathol 191: 809-816.
34.
Xu L, Hu G, Xing P, et al. (2021): Corrigendum to “Paclitaxel alleviates the sepsis-induced acute kidney injury via lnc-MALAT1/miR-370-3p/HMGB1 axis” [Life Sci. 2020 Dec 1; 262:118505. doi:10.1016/j.lfs.2020.118505. Epub 2020 Sep 28]. Life Sci 272: 119159.
35.
Hiltensperger M, Korn T (2018): The interleukin (IL)-23/ T helper (Th)17 axis in experimental autoimmune encephalomyelitis and multiple sclerosis. Cold Spring Harb Perspect Med 8: a029637.
36.
Hyun KH, Gil KC, Kim SG, et al. (2019): Delphinidin chloride and its hydrolytic metabolite gallic acid promote differentiation of regulatory T cells and have an anti-inflammatory effect on the allograft model. J Food Sci 84: 920-930.
37.
Anderson JL, Khoury G, Fromentin R, et al. (2020): Human immunodeficiency virus (HIV)-infected CCR6+ rectal CD4+ T cells and HIV persistence on antiretroviral therapy. J Infect Dis 221: 744-755.
38.
Maldini CR, Gayout K, Leibman RS, et al. (2020): HIV-resistant and HIV-specific CAR-modified CD4(+) T cells mitigate HIV disease progression and confer CD4(+) T cell help in vivo. Mol Ther 28: 1585-1599.
39.
Arneth B (2016): Activated CD4+ and CD8+ T cell proportions in multiple sclerosis patients. Inflammation 39: 2040-2044.
40.
Krovi SH, Kuchroo VK (2022): Activation pathways that drive CD4(+) T cells to break tolerance in autoimmune diseases. Immunol Rev 307: 161-190.
41.
Cui C, Wang J, Fagerberg E, et al. (2021): Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell 184: 6101-6118.e13.
42.
Li H, Burgueno-Bucio E, Xu S, et al. (2019): CD5 on dendritic cells regulates CD4+ and CD8+ T cell activation and induction of immune responses. PLoS One 14: e0222301.
43.
Sun JJ, Li HL, Ma H, et al. (2019): SMYD2 promotes cervical cancer growth by stimulating cell proliferation. Cell Biosci 9: 75.
44.
Yaping W, Zhe W, Zhuling C, et al. (2022): The soldiers needed to be awakened: Tumor-infiltrating immune cells. Front Genet 13: 988703.
45.
Svensson-Arvelund J, Cuadrado-Castano S, Pantsulaia G, et al. (2022): Expanding cross-presenting dendritic cells enhances oncolytic virotherapy and is critical for long-term anti-tumor immunity. Nat Commun 13: 7149.
46.
Wang H, Guo J, Shang X, Wang Z (2020): Less immune cell infiltration and worse prognosis after immunotherapy for patients with lung adenocarcinoma who harbored STK11 mutation. Int Immunopharmacol 84: 106574.
47.
Chen M, Liu X, Du J, et al. (2017): Differentiated regulation of immune-response related genes between LUAD and LUSC subtypes of lung cancers. Oncotarget 8: 133-144.
48.
Maki-Nevala S, Sarhadi VK, Ronty M, et al. (2016): Hot spot mutations in Finnish non-small cell lung cancers. Lung Cancer 99: 102-110.
49.
Wohlhieter CA, Richards AL, Uddin F, et al. (2020): Concurrent mutations in STK11 and KEAP1 promote ferroptosis protection and SCD1 dependence in lung cancer. Cell Rep 33: 108444.
50.
La Fleur L, Falk-Sorqvist E, Smeds P, et al. (2019): Mutation patterns in a population-based non-small cell lung cancer cohort and prognostic impact of concomitant mutations in KRAS and TP53 or STK11. Lung Cancer 130: 50-58.
51.
Abe K, Kitago M, Kitagawa Y, Hirasawa A (2021): Hereditary pancreatic cancer. Int J Clin Oncol 26: 1784-1792.
52.
Shiovitz S, Korde LA (2015): Genetics of breast cancer: a topic in evolution. Ann Oncol 26: 1291-1299.
53.
Ricciuti B, Arbour KC, Lin JJ, et al. (2022): Diminished efficacy of programmed death-(ligand)1 inhibition in STK11- and KEAP1-mutant lung adenocarcinoma is affected by KRAS mutation status. J Thorac Oncol 17: 399-410.
54.
Pop-Bica C, Ciocan CA, Braicu C, et al. (2022): Next-generation sequencing in lung cancer patients: A comparative approach in NSCLC and SCLC mutational landscapes. J Pers Med 12: 453.
55.
Huang Y, Zhang H, Feng J, Tang B (2022): STK11 mutation affects the killing effect of NK cells to promote the progression of lung adenocarcinoma. APMIS 130: 647-656.
56.
Fan J, Wang K, Zirkin B, Papadopoulos V (2018): CRISPR/Cas9-mediated Tspo gene mutations lead to reduced mitochondrial membrane potential and steroid formation in MA-10 mouse tumor Leydig cells. Endocrinology 159: 1130-1146.
57.
Miller J (2020): The function of the thymus and its impact on modern medicine. Science 369: eaba2429.
58.
Huntington ND, Gray DH (2018): Immune homeostasis in health and disease. Immunol Cell Biol 96: 451-452.
59.
Tan Y, Wang M, Zhang Y, et al. (2021): Tumor-associated macrophages: A potential target for cancer therapy. Front Oncol 11: 693517.
60.
Lee M, Du H, Winer DA, et al. (2022): Mechanosensing in macrophages and dendritic cells in steady-state and disease. Front Cell Dev Biol 10: 1044729.