1. El Hayek MS, Ernande L, Benitah JP, et al. (2021): The role of hyperglycaemia in the development of diabetic cardiomyopathy. Arch Cardiovasc Dis 114: 748-760.
2.
Li J, Xu S, Wang L, Wang X (2023): PHPB attenuated cognitive impairment in type 2 diabetic KK-Ay mice by modulating SIRT1/insulin signaling pathway and inhibiting generation of AGEs. Pharmaceuticals (Basel) 16: 305.
3.
Cheng LZ, Li W, Chen YX, et al. (2022): Autophagy and diabetic encephalopathy: mechanistic insights and potential therapeutic implications. Aging Dis 13: 447-457.
4.
Nan X, Sun Q, Xu X, et al. (2022): Forsythoside B ameliorates diabetic cognitive dysfunction by inhibiting hippocampal neuroinflammation and reducing synaptic dysfunction in ovariectomized mice. Front Aging Neurosci 14: 974690.
5.
Kang X, Wang D, Zhang L, et al. (2023): Exendin-4 ameliorates tau hyperphosphorylation and cognitive impairment in type 2 diabetes through acting on Wnt/β-catenin/NeuroD1 pathway. Mol Med 29: 118.
6.
Wątroba M, Grabowska AD, Szukiewicz D (2024): Chemokine CX3CL1 (Fractalkine) signaling and diabetic encephalopathy. Int J Mol Sci 25: 7527.
7.
Yao Y, Shi J, Zhang C, et al. (2023): Pyruvate dehydrogenase kinase 1 protects against neuronal injury and memory loss in mouse models of diabetes. Cell Death Dis 14: 722.
8.
Peng X, Guo H, Zhang X, et al. (2023): TREM2 inhibits tau hyperphosphorylation and neuronal apoptosis via the PI3K/Akt/GSK-3β signaling pathway in vivo and in vitro. Mol Neurobiol 60: 2470-2485.
9.
Hu T, Lu XY, Shi JJ, et al. (2020): Quercetin protects against diabetic encephalopathy via SIRT1/NLRP3 pathway in db/db mice. J Cell Mol Med 24: 3449-3459.
10.
Wang G, Quan J, Su N, et al. (2022): Proteomic analysis of swertiamarin-treated BV-2 cells and possible implications in neuroinflammation. J Oleo Sci 71: 395-400.
11.
Vaidya H, Prajapati A, Rajani M, et al. (2012): Beneficial effects of swertiamarin on dyslipidaemia in streptozotocin-induced type 2 diabetic rats. Phytother Res 26: 1259-1261.
12.
Xu L, Li D, Zhu Y, et al. (2021): Swertiamarin supplementation prevents obesity-related chronic inflammation and insulin resistance in mice fed a high-fat diet. Adipocyte 10: 160-173.
13.
Sharma M, Malim FM, Goswami A, et al. (2023): Neuroprotective effect of swertiamarin in a rotenone model of Parkinson’s disease: Role of neuroinflammation and alpha-synuclein accumulation. ACS Pharmacol Transl Sci 6: 40-51.
14.
Thota RN, Rosato JI, Dias CB, et al. (2020): Dietary supplementation with curcumin reduce circulating levels of glycogen synthase kinase-3β and islet amyloid polypeptide in adults with high risk of type 2 diabetes and Alzheimer’s disease. Nutrients 12: 1032.
15.
Hooper C, Killick R, Lovestone S (2008): The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104: 1433-1439.
16.
Qi Y, Dou DQ, Jiang H, et al. (2017): Arctigenin attenuates learning and memory deficits through PI3k/Akt/GSK-3β pathway reducing tau hyperphosphorylation in Aβ-induced AD mice. Planta Med 83: 51-56.
17.
Li LF, Gao Y, Xu Y, et al. (2023): Praeruptorin C alleviates cognitive impairment in type 2 diabetic mice through restoring PI3K/AKT/GSK3β pathway. Phytother Res 37: 4838-4850.
18.
Wang S, He B, Hang W, et al. (2018): Berberine alleviates tau hy- perphosphorylation and axonopathy-associated with diabetic encephalopathy via restoring PI3K/Akt/GSK3β pathway. J Alzheimers Dis 65: 1385-1400.
19.
Dhanavathy G (2015): Immunohistochemistry, histopathology, and biomarker studies of swertiamarin, a secoiridoid glycoside, prevents and protects streptozotocin-inducedβ-cell damage in Wistar rat pancreas. J Endocrinol Invest 38: 669-684.
20.
Ndisang JF, Vannacci A, Rastogi S (2017): Insulin resistance, type 1 and type 2 diabetes, and related complications 2017. J Diabetes Res: 1478294.
21.
Zilliox LA, Chadrasekaran K, Kwan JY, Russell JW (2016): Diabetes and cognitive impairment. Curr Diab Rep 16: 87.
22.
Fang XX, Xu FF, Liu Z, et al. (2022): Interleukin 17A deficiency alleviates neuroinflammation and cognitive impairment in an experimental model of diabetic encephalopathy. Neural Regen Res 17: 2771-2777.
23.
Bulut F, Adam M, Özgen A, et al. (2023): Protective effects of chronic humanin treatment in mice with diabetic encephalopathy: A focus on oxidative stress, inflammation, and apoptosis. Behav Brain Res 452: 114584.
24.
Wang T, Wu S, Ibrahim IAA, Fan L (2023): Cardioprotective role of swertiamarin, a plant glycoside against experimentally induced myocardial infarction via antioxidant and anti-inflammatory functions. Appl Biochem Biotechnol 195: 5394-5408.
25.
Yang Y, Li J, Wei C, et al. (2019): Amelioration of nonalcoholic fatty liver disease by swertiamarin in fructose-fed mice. Phytomedicine 59: 152782.
26.
Wang Y, Mandelkow E (2016): Tau in physiology and pathology. Nat Rev Neurosci 17: 5-21.
27.
Pîrşcoveanu DFV, Pirici I, Tudorică V, et al. (2017): Tau protein in neurodegenerative diseases - a review. Rom J Morphol Embryol 58: 1141-1150.
28.
Zheng M, Zou C, Li M, et al. (2017): Folic acid reduces tau phosphorylation by regulating PP2A methylation in streptozotocin-induced diabetic mice. Int J Mol Sci 18: 861.
29.
Ramasubbu K, Devi Rajeswari V (2023): Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review. Mol Cell Biochem 478: 1307-1324.
30.
Yang W, Liu Y, Xu QQ, et al. (2020): Sulforaphene ameliorates neuroinflammation and hyperphosphorylated tau protein via regulating the PI3K/Akt/GSK-3β pathway in experimental models of Alzheimer’s disease. Oxid Med Cell Longev: 4754195.
31.
Wang XH, Zuo ZF, Meng L, et al. (2023): Neuroprotective effect of salidroside on hippocampal neurons in diabetic mice via PI3K/Akt/GSK-3β signaling pathway. Psychopharmacology (Berl) 240: 1865-1876.