1. Ahuja M, Ammal Kaidery N, Attucks OC, McDade E, Hushpulian DM, Gaisin A, Gaisina I, Ahn YH, Nikulin S, Poloznikov A, Gazaryan I, Yamamoto M, Matsumoto M, Igarashi K, Sharma SM, Thomas B. Bach1 derepression is neuroprotective in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 2021; 118: e2111643118.
2.
Ammal KN, Ahuja M, Thomas B. Crosstalk between Nrf2 signaling and mitochondrial function in Parkinson’s disease. Mol Cell Neurosci 2019; 101: 103413.
3.
Amro MS, Teoh SL, Norzana AG, Srijit D. The potential role of herbal products in the treatment of Parkinson’s disease. Clin Ter 2018; 169: e23-e33.
4.
Anandhan A, Nguyen N, Syal A, Dreher LA, Dodson M, Zhang DD, Madhavan L. NRF2 loss accentuates parkinsonian pathology and behavioral dysfunction in human alpha-synuclein overexpressing mice. Aging Dis 2021; 12: 964-982.
5.
Angelova PR, Esteras N, Abramov AY. Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: Finding ways for prevention. Med Res Rev 2021; 41: 770-784.
6.
Arab HH, Safar MM, Shahin NN. Targeting ROS-dependent AKT/GSK-3beta/NF-kappaB and DJ-1/Nrf2 pathways by dapagliflozin attenuates neuronal injury and motor dysfunction in rotenone-induced Parkinson’s disease rat model. ACS Chem Neurosci 2021; 12: 689-703.
7.
Arnold S, Victor MB, Beyer C. Estrogen and the regulation of mitochondrial structure and function in the brain. J Steroid Biochem Mol Biol 2012; 131: 2-9.
8.
Biju KC, Evans RC, Shrestha K, Carlisle DCB, Gelfond J, Clark RA. Methylene blue ameliorates olfactory dysfunction and motor deficits in a chronic MPTP/Probenecid mouse model of Parkinson’s disease. Neuroscience 2018; 380: 111-122.
9.
Cerri S, Mus L, Blandini F. Parkinson’s disease in women and men: What’s the difference? J Parkinsons Dis 2019; 9: 501-515.
10.
Chen J, Chen Y, Zheng Y, Zhao J, Yu H, Zhu J, Li D. Protective effects and mechanisms of procyanidins on Parkinson’s disease in vivo and in vitro. Molecules 2021; 26: 1-20.
11.
Choi JW, Kim S, Yoo JS, Kim HJ, Kim HJ, Kim BE, Lee EH, Lee YS, Park JH, Park KD. Development and optimization of halogenated vinyl sulfones as Nrf2 activators for the treatment of Parkinson’s disease. Eur J Med Chem 2021; 212: 113103.
12.
de Farias CC, Maes M, Bonifacio KL, Bortolasci CC, de Souza Nogueira A, Brinholi FF, Matsumoto AK, do Nascimento MA, de Melo LB, Nixdorf SL, Lavado EL, Moreira EG, Barbosa DS. Highly specific changes in antioxidant levels and lipid peroxidation in Parkinson’s disease and its progression: Disease and staging biomarkers and new drug targets. Neurosci Lett 2016; 617: 66-71.
13.
Demuro S, Di Martino RMC, Ortega JA, Cavalli A. GSK-3beta, FYN, and DYRK1A: Master regulators in neurodegenerative pathways. Int J Mol Sci 2021; 22: 1-35.
14.
Elizabeth P, Meredith GE, Callen S, Totterdell S, Lau YS. Mouse model of parkinsonism: a comparison between subacute MPTP and chronic MPTP/Probenecid treatment. Neuroscience 2001; 106: 589-601.
15.
Echeverria V, Echeverria F, Barreto GE, Echeverria J, Mendoza C. Estrogenic plants: To prevent neurodegeneration and memory loss and other symptoms in women after menopause. Front Pharmacol 2021; 12: 644103.
16.
Fao L, Mota SI, Rego AC. Shaping the Nrf2-ARE-related pathways in Alzheimer’s and Parkinson’s diseases. Ageing Res Rev 2019; 54: 100942.
17.
Goyal A, Verma A, Agrawal N. Dietary phytoestrogens: Neuroprotective role in Parkinson’s disease. Curr Neurovasc Res 2021; 18: 254-267.
18.
Guo H, Liu M, Zhang L, Wang L, Hou W, Ma Y, Ma Y. The critical period for neuroprotection by estrogen replacement therapy and the potential underlying mechanisms. Curr Neuropharmacol 2020; 18: 485-500.
19.
Guo Y, Ma Z, Ning X, Chen Y, Tian C, Wang X, Zhang Z, Liu J. A novel synthetic precursor of styryl sulfone neuroprotective agents inhibits neuroinflammatory responses and oxidative stress damage through the P38 signaling pathway in the cell and animal model of Parkinson’s disease. Molecules 2021; 26: 1-18.
20.
Hammond SL, Popichak KA, Li X, Hunt LG, Richman EH, Damale PU, Chong EKP, Backos DS, Safe S, Tjalkens RB. The Nurr1 ligand,1,1-bis(3’-Indolyl)-1-(p-chlorophenyl) methane, modulates glial reactivity and is neuroprotective in MPTP-induced Parkinsonism. J Pharmacol Exp Ther 2018; 365: 636-651.
21.
He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 2017; 44: 532-553.
22.
He X, Yang S, Zhang R, Hou L, Xu J, Hu Y, Xu R, Wang H, Zhang Y. Smilagenin protects dopaminergic neurons in chronic MPTP/Probenecid-lesioned Parkinson’s disease models. Front Cell Neurosci 2019; 13: 18.
23.
Hemmati-Dinarvand M, Saedi S, Valilo M, Kalantary-Charvadeh A, Alizadeh Sani M, Kargar R, Safari H, Samadi N. Oxidative stress and Parkinson’s disease: conflict of oxidant-antioxidant systems. Neurosci Lett 2019; 709: 134296.
24.
Kaidery NA, Banerjee R, Yang L, Smirnova NA, Hushpulian DM, Liby KT, Williams CR, Yamamoto M, Kensler TW, Ratan RR, Sporn MB, Beal MF, Gazaryan IG, Thomas B. Targeting Nrf2-mediated gene transcription by extremely potent synthetic triterpenoids attenuate dopaminergic neurotoxicity in the MPTP mouse model of Parkinson’s disease. Antioxid Redox Signal 2013; 18: 139-157.
25.
Kin-Lun T, Ho SL, Lo SK. Estrogen improves motor disability in parkinsonian postmenopausal women with motor fluctuations. Neurology 2000; 54: 2292-2298.
26.
Kirkley KS, Popichak KA, Hammond SL, Davies C, Hunt L, Tjalkens RB. Genetic suppression of IKK2/NF-kappaB in astrocytes inhibits neuroinflammation and reduces neuronal loss in the MPTP-Probenecid model of Parkinson’s disease. Neurobiol Dis 2019; 127: 193-209.
27.
Lecca D, Janda E, Mulas G, Diana A, Martino C, Angius F, Spolitu S, Casu MA, Simbula G, Boi L, Batetta B, Spiga S, Carta AR. Boosting phagocytosis and anti-inflammatory phenotype in microglia mediates neuroprotection by PPARgamma agonist MDG548 in Parkinson’s disease models. Br J Pharmacol 2018; 175: 3298-3314.
28.
Lee YH, Cha J, Chung SJ, Yoo HS, Sohn YH, Ye BS, Lee PH. Beneficial effect of estrogen on nigrostriatal dopaminergic neurons in drug-naive postmenopausal Parkinson’s disease. Sci Rep 2019; 9: 10531.
29.
Li J, Ma S, Chen J, Hu K, Li Y, Zhang Z, Su Z, Woodgett JR, Li M, Huang Q. GSK-3beta contributes to Parkinsonian dopaminergic neuron death: Evidence from conditional knockout mice and Tideglusib. Front Mol Neurosci 2020; 13: 81.
30.
Li X, Zhang J, Zhang X, Dong M. Puerarin suppresses MPP(+)/MPTP-induced oxidative stress through an Nrf2-dependent mechanism. Food Chem Toxicol 2020; 144: 111644.
31.
Liu H, Yu C, Xu T, Zhang X, Dong M. Synergistic protective effect of paeoniflorin and beta-ecdysterone against rotenone-induced neurotoxicity in PC12 cells. Apoptosis 2016; 21: 1354-1365.
32.
Ma Y, Rong Q. Effect of different MPTP administration intervals on mouse models of Parkinson’s disease. Contrast Media Mol Imaging 2022; 2022: 2112146.
33.
Makav M, Eroglu HA. Recuperative effect of estrogen on rotenone-induced experimental model of Parkinson’s disease in rats. Environ Sci Pollut Res Int 2021; 28: 21266-21275.
34.
Marino BLB, de Souza LR, Sousa KPA, Ferreira JV, Padilha EC, da Silva C, Taft CA, Hage-Melim LIS. Parkinson’s disease: A review from pathophysiology to treatment. Mini Rev Med Chem 2020; 20: 754-767.
35.
Niture SK, Khatri R, Jaiswal AK. Regulation of Nrf2-an update. Free Radic Biol Med 2014; 66: 36-44.
36.
Pan J, Shen F, Tian K, Wang M, Xi Y, Li J, Huang Z. Triptolide induces oxidative damage in NRK-52E cells through facilitating Nrf2 degradation by ubiquitination via the GSK-3beta/Fyn pathway. Toxicol In Vitro 2019; 58: 187-194.
37.
Parga JA, Rodriguez-Perez AI, Garcia-Garrote M, Rodriguez-Pallares J, Labandeira-Garcia JL. NRF2 activation and downstream effects: Focus on Parkinson’s disease and brain angiotensin. Antioxidants (Basel) 2021; 10: 1-23.
38.
Park JS, Lee YY, Kim J, Seo H, Kim HS. beta-Lapachone increases phase II antioxidant enzyme expression via NQO1-AMPK/PI3K-Nrf2/ARE signaling in rat primary astrocytes. Free Radic Biol Med 2016; 97: 168-178.
39.
Ran C, Wirdefeldt K, Brodin L, Ramezani M, Westerlund M, Xiang F, Anvret A, Willows T, Sydow O, Johansson A, Galter D, Svenningsson P, Belin AC. Genetic variations and mRNA expression of NRF2 in Parkinson’s disease. Parkinsons Dis 2017; 2017: 4020198.
40.
Sandberg M, Patil J, D’Angelo B, Weber SG, Mallard C. NRF2-regulation in brain health and disease: implication of cerebral inflammation. Neuropharmacology 2014; 79: 298-306.
41.
Satoh T, Trudler D, Oh CK, Lipton SA. Potential therapeutic use of the rosemary diterpene carnosic acid for Alzheimer’s disease, Parkinson’s disease, and long-COVID through NRF2 activation to counteract the NLRP3 inflammasome. Antioxidants (Basel) 2022; 11: 1-19.
42.
Shen D, Tian X, Zhang B, Song R. Mechanistic evaluation of neuroprotective effect of estradiol on rotenone and 6-OHDA induced Parkinson’s disease. Pharmacol Rep 2017; 69: 1178-1185.
43.
Singh T, Yadav S. Role of microRNAs in neurodegeneration induced by environmental neurotoxicants and aging. Ageing Res Rev 2020; 60: 101068.
44.
Smeyne M, Smeyne RJ. Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med 2013; 62: 13-25.
45.
Soni D, Kumar P. GSK-3beta-mediated regulation of Nrf2/HO-1 signaling as a new therapeutic approach in the treatment of movement disorders. Pharmacol Rep 2022; 74: 557-569.
46.
Tavakkoli A, Iranshahi M, Hasheminezhad SH, Hayes AW, Karimi G. The neuroprotective activities of natural products through the Nrf2 upregulation. Phytother Res 2019; 33: 2256-2273.
47.
Tenkorang MA, Snyder B, Cunningham RL. Sex-related differences in oxidative stress and neurodegeneration. Steroids 2018; 133: 21-27.
48.
Thadathil N, Xiao J, Hori R, Alway SE, Khan MM. Brain selective estrogen treatment protects dopaminergic neurons and preserves behavioral function in MPTP-induced mouse model of Parkinson’s disease. J Neuroimmune Pharmacol 2021; 16: 667-678.
49.
Villavicencio Tejo F, Quintanilla RA. Contribution of the Nrf2 pathway on oxidative damage and mitochondrial failure in Parkinson and Alzheimer’s disease. Antioxidants (Basel) 2021; 10: 1-31.
50.
Wang L, Zhang Z, Hou L, Wang Y, Zuo J, Xue M, Li X, Liu Y, Song J, Pan F, Pu T. Phytic acid attenuates upregulation of GSK-3beta and disturbance of synaptic vesicle recycling in MPTP-induced Parkinson’s disease models. Neurochem Int 2019; 129: 104507.
51.
Wang T, Li C, Han B, Wang Z, Meng X, Zhang L, He J, Fu. Neuroprotective effects of Danshensu on rotenone-induced Parkinson’s disease models in vitro and in vivo. BMC Complement Med Ther 2020; 20: 20.
52.
Whitworth AJ, Pallanck LJ. PINK1/Parkin mitophagy and neurodegeneration-what do we really know in vivo? Curr Opin Genet Dev 2017; 44: 47-53.
53.
Xin Y, Bai Y, Jiang X, Zhou S, Wang Y, Wintergerst KA, Cui T, Ji H, Tan Y, Cai L. Sulforaphane prevents angiotensin II-induced cardiomyopathy by activation of Nrf2 via stimulating the Akt/GSK-3ss/Fyn pathway. Redox Biol 2018; 15: 405-417.
54.
Xu SF, Zhang YH, Wang S, Pang ZQ, Fan YG, Li JY, Wang ZY, Guo C. Lactoferrin ameliorates dopaminergic neurodegeneration and motor deficits in MPTP-treated mice. Redox Biol 2019; 21: 101090.
55.
Yang W, Hao W, Meng Z, Ding S, Li X, Zhang T, Huang W, Xu L, Zhang Y, Yang J, Gu X. Molecular regulatory mechanism and toxicology of neurodegenerative processes in MPTP/Probenecid-induced progressive Parkinson’s disease mice model revealed by transcriptome. Mol Neurobiol 2021; 58: 603-616.
56.
Zgorzynska E, Dziedzic B, Walczewska A. An overview of the Nrf2/ARE pathway and its role in neurodegenerative diseases. Int J Mol Sci 2021; 22: 1-23.
57.
Zhang X, Xu X, Xu T, Qin S. beta-Ecdysterone suppresses interleukin-1beta-induced apoptosis and inflammation in rat chondrocytes via inhibition of NF-kappaB signaling pathway. Drug Dev Res 2014; 75: 195-201.
58.
Zhao M, Wang B, Zhang C, Su Z, Guo B, Zhao Y, Zheng R. The DJ1-Nrf2-STING axis mediates the neuroprotective effects of Withaferin A in Parkinson’s disease. Cell Death Differ 2021; 28: 2517-2535.
59.
Zou Y, Wang R, Guo H, Dong M. Phytoestrogen beta-Ecdysterone protects PC12 cells against MPP+-induced neurotoxicity in vitro: Involvement of PI3K-Nrf2-regulated pathway. Toxicol Sci 2015; 147: 28-38.